Showing posts with label relays. Show all posts
Showing posts with label relays. Show all posts

Wednesday, December 31, 2014

Distance Relay or Impedance Relay



"" This is Just an Example for a post ""

There is one type of relay which functions depending upon the distance of fault in the line. More specifically, the relay operates depending upon the impedance between the point of fault and the point where relay is installed. These relays are known as distance relay orimpedance relay.

Working Principle of Distance or Impedance Relay

The working principle of distance relay or impedance relay is very simple. There is one voltage element from potential transformer and an current element fed from current transformer of the system. The deflecting torque is produced by secondary current of CT and restoring torque is produced by voltage of potential transformer. In normal operating condition, restoring torque is more than deflecting torque. Hence relay will not operate. But in faulty condition, the current becomes quite large whereas voltage becomes less. Consequently, deflecting torque becomes more than restoring torque and dynamic parts of the relay starts moving which ultimately close the No contact of relay. Hence clearly operation or working principle of distance relay, depends upon the ratio of system voltage and current. As the ratio of voltage to current is nothing but impedance a distance relay is also known as impedance relay.
The operation of such relay depends upon the predetermined value of voltage to current ratio. This ratio is nothing but impedance. The relay will only operate when this voltage to current ratio becomes less than its predetermined value. Hence, it can be said that the relay will only operate when the impedance of the line becomes less than predetermined impedance (voltage / current). As the impedance of a transmission line is directly proportional to its length, it can easily be concluded that a distance relay can only operate if fault is occurred within a predetermined distance or length of line.

Types of Distance or Impedance Relay

There are mainly two types of distance relay-
  1. Definite distance relay.
  2. Time distance relay.
Let us discuss one by one.

Definite Distance Relay

This is simply a variety of balance beam relay. Here one beam is placed horizontally and supported by hinge on the middle. One end of the beam is pulled downward by the magnetic force of voltage coil, fed from potential transformer attached to the line. Other end of the beam is pulled downward by the magnetic force of current coil fed from current transformer connected in series with line. Due to torque produced by these two downward forces, the beam stays at an equilibrium position. The torque due to voltage coil, serves as restraining torque and torque due to current coil, serves as deflecting torque.
Under normal operating condition restraining torque is greater than deflecting torque. Hence contacts of this distance relay remain open. When any fault is occurred in the feeder, under protected zone, voltage of feeder decreases and at the same time current increases. The ratio of voltage to current i.e. impedance falls below the pre-determined value. In this situation, current coil pulls the beam more strongly than voltage coil, hence beam tilts to close the relay contacts and consequently the circuit breaker associated with this impedance relay will trip.

Time Distance Impedance Relay

This delay automatically adjusts its operating time according to the distance of the relay from the fault point. The time distance impedance relay not only be operated depending upon voltage to current ratio, its operating time also depends upon the value of this ratio. That means,

Construction of Time Distance Impedance Relay

time distance impedance relay

The relay mainly consists of a current driven element like double winding type induction over current relay. The spindle carrying the disc of this element is connected by means of a spiral spring coupling to a second spindle which carries the bridging piece of the relay contacts. The bridge is normally held in the open position by an armature held against the pole face of an electromagnet excited by the voltage of the circuit to be protected.

Operating Principle of Time Distance Impedance Relay

During normal operating condition the attraction force of armature fed from PT is more than force generated by induction element, hence relay contacts remain in open position when a short circuit fault occurs in the transmission line, the current in the induction element increases. Then the induction in the induction element increases. Then the induction element starts rotating. The speed of rotation of induction elements depends upon the level of fault i.e. quantity of current in the induction element. As the rotation of the disc proceeds, the spiral spring coupling is wound up till the tension of the spring is sufficient to pull the armature away from the pole face of the voltage excited magnet.
The angle through which the disc travels the disc travel before relay operate depends upon the pull of the voltage excited magnet. The greater the pull, the greater will be the travel of the disc. The pull of this magnet depends upon the line voltage. The greater the line voltage the greater the pull hence longer will be the travel of the disc i.e. operating time is proportional to V.
Again, speed of rotation of induction element approximately proportional to current in this element. Hence, time of operation is inversely proportional to current.


Therefore time of operation of relay,


Electrical Protection Relay


""Just an Example For a Post ""

Definition of Protective Relay

A relay is automatic device which senses an abnormal condition of electrical circuit and closes its contacts. These contacts in turns close and complete the circuit breaker trip coil circuit hence make the circuit breaker tripped for disconnecting the faulty portion of the electrical circuit from rest of the healthy circuit. 
Now let’s have a discussion on some terms related to protective relay.
Pickup level of actuating signal: The value of actuating quantity (voltage or current) which is on threshold above which the relay initiates to be operated.
If the value of actuating quantity is increased, the electromagnetic effect of the relay coil is increased and above a certain level of actuating quantity the moving mechanism of the relay just starts to move. 
Reset level: The value of current or voltage below which a relay opens its contacts and comes in original position.
Operating time of relay -Just after exceeding pickup level of actuating quantity the moving mechanism (for example rotating disc) of relay starts moving and it ultimately close the relay contacts at the end of its journey. The time which elapses between the instant when actuating quantity exceeds the pickup value to the instant when the relay contacts close.
Reset time of relay – The time which elapses between the instant when the actuating quantity becomes less than the reset value to the instant when the relay contacts returns to its normal position.
Reach of relay – A distance relay operates whenever the distance seen by the relay is less than the pre-specified impedance. The actuating impedance in the relay is the function of distance in a distance protection relay. This impedance or corresponding distance is called reach of the relay.
Power system protection relays can be categorized into different types of relays.

Types of Relays

Types of protection relays are mainly based on their characteristic, logic, on actuating parameter and operation mechanism.
Based on operation mechanism protection relay can be categorized as electromagnetic relay, static relay and mechanical relay. Actually relay is nothing but a combination of one or more open or closed contacts. These all or some specific contacts the relay change their state when actuating parameters are applied to the relay. That means open contacts become closed and closed contacts become open. In electromagnetic relay these closing and opening of relay contacts are done by electromagnetic action of a solenoid. 
In mechanical relay these closing and opening of relay contacts are done by mechanical displacement of different gear level system.
In static relay it is mainly done by semiconductor switches like thyristor. In digital relay on and off state can be referred as 1 and 0 state. 
Based on Characteristic the protection relay can be categorized as-
  1. Definite time relays
  2. Inverse time relays with definite minimum time(IDMT)
  3. Instantaneous relays.
  4. IDMT with inst.
  5. Stepped characteristic.
  6. Programmed switches.
  7. Voltage restraint over current relay.

Based on of logic the protection relay can be categorized as-
  1. Differential.
  2. Unbalance.
  3. Neutral displacement.
  4. Directional.
  5. Restricted earth fault.
  6. Over fluxing.
  7. Distance schemes.
  8. Bus bar protection.
  9. Reverse power relays.
  10. Loss of excitation.
  11. Negative phase sequence relays etc.

Based on actuating parameter the protection relay can be categorized as-
  1. Current relays.
  2. Voltage relays.
  3. Frequency relays.
  4. Power relays etc.

Based on application the protection relay can be categorized as-
  1. Primary relay.
  2. Backup relay.

Primary relay or primary protection relay is the first line of power system protection whereas backup relay is operated only when primary relay fails to be operated during fault. Hence backup relay is slower in action than primary relay. Any relay may fail to be operated due to any of the following reasons,
  1. The protective relay itself is defective.
  2. DC Trip voltage supply to the relay is unavailable.
  3. Trip lead from relay panel to circuit breaker is disconnected.
  4. Trip coil in the circuit breaker is disconnected or defective.
  5. Current or voltage signals from CT or PT respectively is unavailable.
As because backup relay operates only when primary relay fails, backup protection relay should not have anything common with primary protection relay.
Some examples of Mechanical Relay are-
  1. Thermal
  2. (a) OT trip (Oil Temperature Trip)
    (b) WT trip (Winding Temperature Trip)
    (C) Bearing temp trip etc.

  3. Float type
  4. (a) Buchholz
    (b) OSR
    (c) PRV
    (d) Water level Controls etc.

  5. Pressure switches.
  6. Mechanical interlocks.
  7. Pole discrepancy relay.

Relay Setting Calculation



"" Just An Example For a post ""

During study of electrical protective relays, some special terms are frequently used. For proper understanding, the functions of different protective relays, the definition of such terms must be understood properly. Such terms are,


  1. Pick up current.
  2. Current setting.
  3. Plug setting multiplier (PSM).
  4. Time setting multiplier (TSM).

Pick Up Current of Relay

In all electrical relays, the moving contacts are not free to move. All the contacts remain in their respective normal position by some force applied on them continuously. This force is called controlling force of the relay. This controlling force may be gravitational force, may be spring force, may be magnetic force. The force applied on the relay’s moving parts for changing the normal position of the contacts, is called deflecting force. This deflecting force is always in opposition of controlling force and presents always in the relay. Although the deflecting force always presents in the relay directly connected to live line, but as the magnitude of this force is less than controlling force in normal condition, the relay does not operate. If the actuating current in the relay coil increases gradually, the deflecting force in electro mechanical relay, is also increased. Once, the deflecting force crosses the controlling force, the moving parts of the relay initiate to move to change the position of the contacts in the relay. The current for which the relay initiates it operation is called pick up current of relay.

Current Setting of Relay

The minimum pick up value of the deflecting force of an electrical relay is constant. Again the deflecting force of the coil is proportional to its number of turns and current flowing through the coil.
Now, if we can change the number of active turns of any coil, the required current to reach at minimum pick value of the deflecting force, in the coil also changes. That means if active turns of the relay coil is reduced, then proportionately more current is required to produce desired relay actuating force. Similarly if active turns of the relay coil is increased, then proportionately reduced current is required to produce same desired deflecting force.
Practically same model relays may be used in different systems. As per these systems requirement the pick up current of relay is adjusted. This is known as current setting of relay. This is achieved by providing required number of tapping in the coil. These taps are brought out to a plug bridge. The number of active turns in the coil can be changed by inserting plug in different points in the bridge.
The current setting of relay is expressed in percentage ratio of relay pick up current to rated secondary current of CT.
That means,


For example, suppose, you want that, an over current relay should operate when the system current just crosses 125% of rated current. If the relay is rated with 1 A, the normal pick up current of the relay is 1 A and it should be equal to secondary rated current of current transformer connected to the relay.

Then, the relay will be operated when the current of CT secondary becomes more than or equal 1.25 A.
As per definition,


The current setting is sometimes referred as current plug setting.

The current setting of over current relay is generally ranged from 50% to 200%, in steps of 25%. For earth fault relay it is from 10% to 70% in steps of 10%.

Plug Setting Multiplier of Relay

Plug setting multiplier of relay is referred as ratio of fault current in the relay to its pick up current.


Suppose we have connected on protection CT of ratio 200/1 A and current setting is 150%.

Hence, pick up current of the relay is, 1 × 150 % = 1.5 A
Now, suppose fault current in the CT primary is 1000 A. Hence, fault current in the CT secondary i.e. in the relay coil is, 1000 × 1/200 = 5 A
Therefore PSM of the relay is, 5 / 1.5 =3.33

Time Setting Multiplier of Relay

The operating time of an electrical relay mainly depends upon two factors :
  1. How long distance to be traveled by the moving parts of the relay for closing relay contacts and
  2. How fast the moving parts of the relay cover this distance.
So far adjusting relay operating time, both of the factors to be adjusted.
The adjustment of travelling distance of an electromechanical relay is commonly known as time setting. This adjustment is commonly known as time setting multiplier of relay. The time setting dial is calibrated from 0 to 1 in steps 0.05 sec.
But by adjusting only time setting multiplier, we can not set the actual time of operation of an electrical relay. As we already said, the time of operation also depends upon the speed of operation. The speed of moving parts of relay depends upon the force due to current in the relay coil. Hence it is clear that, speed of operation of an electrical relay depends upon the level of fault current. In other words, time of operation of relay depends upon plug setting multiplier. The relation between time of operation and plug setting multiplier is plotted on a graph paper and this is known as time / PSM graph. From this graph one can determine, the total time taken by the moving parts of an electromechanical relay, to complete its total travelling distance for different PSM. In time setting multiplier, this total travelling distance is divided and calibrated from 0 to 1 in steps of 0.05.
So when time setting is 0.1, the moving parts of the relay has to travel only 0.1 times of the total travelling distance, to close the contact of the relay. So, if we get total operating time of the relay for a particular PSM from time / PSM graph and if we multiply that time with the time setting multiplier, we will get, actual time of operation of relay for said PSM and TSM.
For getting clear idea, let us have a practical example. Say a relay has time setting 0.1 and you have to calculate actual time of operation for PSM 10.
From time / PSM graph of the relay as shown below, we can see the total operating time of the relay is 3 seconds. That means, the moving parts of the relay take total 3 seconds to travel 100% travelling distance. As the time setting multiplier is 0.1 here, actually the moving parts of the relay have to travel only 0.1 × 100% or 10% of the total travel distance, to close the relay contacts.
Hence, actual operating time of the relay is 3 × 0.1 = 0.3 sec. i.e. 10% of 3 sec.

Time vs PSM Curve of Relay

This is relation curve between operating time and plug setting multiplier of an electrical relay. The x-axis or horizontal axis of the Time / PSM graph represents, PSM and Y-axis or vertical axis represents time of operation of the relay. The time of operation represents in this graph is that, which required to operate the relay when time setting multiplier set at 1.
From the Time / PSM curve of a typical relay shown below, it is seen that, if PSM is 10, the time of operation of relay is 3 sec. That means, the relay will take 3 seconds to complete its operation, with time setting 1.
It is also seen from the curve that, for lower value of plug setting multiplier, i.e. for lower value of fault current, the time of operation of the relay is inversely proportional to the fault current.
But when PSM becomes more than 20, the operating time of relay becomes almost constant. This feature is necessary in order to ensure discrimination on very heavy fault current flowing through sound feeders.

Calculation of Relay Operation Time

For calculating actual relay operating time, we need to know these following operation.
  1. Current setting.
  2. Fault current level.
  3. Ratio of current transformer.
  4. Time / PSM curve.
  5. Time setting.
Step – 1
From CT ratio, we first see the rated secondary current of CT. Say the CT ratio is 100 / 1 A, i.e. secondary current of CT is 1 A.
Step – 2 
From current setting we calculate the trick current of the relay. Say current setting of the relay is 150% therefore pick up current of the relay is 1 × 150% = 1.5 A.
Step – 3
Now we have to calculate PSM for the specified faulty current level. For that, we have to first divide primary faulty current by CT ratio to get relay faulty current. Say the faulty current level is 1500 A, in the CT primary, hence secondary equivalent of faulty current is 1500/(100/1) = 15 A

Step – 4
Now, after calculating PSM, we have to find out the total time of operation of the relay from Time / PSM curve. From the curve, say we found the time of operation of relay is 3 second for PSM = 10.
Step – 5
Finally that operating time of relay would be multiplied with time setting multiplier, in order to get actual time of operation of relay. Hence say time setting of the relay is 0.1.
Therefore actual time of operation of the relay for PSM 10, is 3 × 0.1 = 0.3 sec or 300 ms.